

ADICLib_256R5
SOFTWARE API

PROGRAMMING MANUAL

FOR THE ADIC LINEAR ARRAY
CONTROLLER R5 HARDWARE

(Not for Use with Prior Hardware Board Revisions)

A/DIC Inc.
740 Florida Central Pkwy

Suite 1024
Longwood, FL 32750

(407) 834-9981

A/DIC Inc. Page 2

TABLE OF CONTENTS

ARRAYADD ... 4

ARRAYPERCENTDIFF ... 5

ARRAYSUBTRACT .. 7

CLOSEDEVICE .. 8

DOCALIBRATE ... 9

FLUX_P ... 11

FLUX_W .. 12

GETBOARD_HANDLE ... 13

GETDATA2 .. 15

GETNUMBOARDS .. 17

GETQUERY3 .. 18

HIDEBADPIXELS_BRD .. 20

MARKBADPIXEL .. 21

READE2BLOCK... 22

READTECADCHANNEL ... 24

READTECSTATUS ... 26

READTESETPOINT ... 27

RECALLTESETPOINT ... 28

RESTOREALL .. 29

SAVEE2BLOCK ... 32

SENDALLCOEFF ... 34

SETCONVERSIONREF_BRD... 36

SETDACGSKIM... 38

SETDACREFERENCES_BRD ... 39

SETDACVH .. 41

SETDACVL ... 42

A/DIC Inc. Page 3

SETDETBIAS .. 43

SETGLOBALSKIMVAL_BRD .. 45

SETINTEGRATION .. 47

SETMUXSIZE ... 48

SETTESETPOINT ... 49

SETWELLSIZE ... 51

STOREALL .. 53

STORETESETPOINT .. 54

SUPPRESSCALSTAT .. 55

SUPPRESSERRORS ... 56

SYNCPC ... 58

TECQUERY... 61

TURNENHCOOLEROFF ... 62

TURNENHCOOLERON .. 63

STATUS / ERROR CODE DEFINITIONS... 64

ERROR DEFINITIONS: .. 65

A/DIC Inc. Page 4

ArrayAdd

Description:
Adds two single dimension, single precision data arrays, array1 and array2, of equal

length together, storing the resulting array in array1.

Calling format:
ArrayAdd(array1, array2, #arrayelements)

Visual C++ declare:
extern "C" __declspec(dllimport) long WINAPI ArrayAdd(float array1[], float array2[],

long dataSize);

Visual C++ call:
{return value} = ArrayAdd(arrayname1, arrayname2, datasize);

Visual BASIC declare:
Public Declare Function ArrayAdd Lib "ADICLib_256R5.dll" (ByRef Array1 As Single, _

ByRef array2 As Single, ByVal dataSize As Long) As Long

Visual BASIC call:
 {return value} = ArrayAdd(arrayname1(0), arrayname2(0), datasize)

LabView Function Prototype:
long ArrayAdd(float *arg1, float *arg2, long arg3);

Parameters:
arrayname1 = array to be added to and the addition result array returned
arrayname2 = array to add to arrayname1
datasize = the number of elements in the single dimension array (128 or 256)
{return value} = Function evaluation status, A 1 indicates successful operation, a 0

indicates there was an error.

Algorithmn:
array1 = array1 + array2

Programming Notes:
1) The __stdcall calling convention is used for the function call.
2) Function returns no value (void), the result is passed back to the calling procedure in

array1.
3) Arrays are always passed by reference. To pass an entire array by reference in

Visual BASIC to a DLL written in C, only the first element of the array is passed by
reference. The DLL will have full access to the array since arrays are stored
sequentially in memory.

A/DIC Inc. Page 5

ArrayPercentDiff

Description:
Finds the percent difference of one single dimension, single precision array, array1, to a

another single dimension, single precision reference array, array2. The resulting
data in percent is returned in array1.

Calling format:
ArrayPercentDiff(array1, array2, #arrayelements)

Visual C++ declare:
extern "C" __declspec(dllimport) void WINAPI ArrayPercentDiff(float array1[], float

array2[], long dataSize);

Visual C++ call:
{return value} = ArrayPercentDiff(arrayname1, arrayname2, datasize);

Visual BASIC declare:
Public Declare Function ArrayPercentDiff Lib "ADICLib_256R5.dll" (ByRef Array1 _

As Single, ByRef array2 As Single, ByVal dataSize As Long) As Long

Visual BASIC call:
{return value} = ArrayPercentDiff(arrayname1(0), arrayname2(0), datasize)

LabView Function Prototype:
long ArrayAdd(float *arg1, float *arg2, long arg3);

Parameters:
arrayname1 = array to compute the percent difference from arrayname2
arrayname2 = the reference array
datasize = the number of elements in the single dimension array (128 or 256))
{return value} = Function evaluation status, A 1 indicates successful operation, a 0

indicates there was an error.

Algorithmn:
array1 = 100 * (array1 - array2) / array2)

If an element of array2 = 0, it is arbitrarily set to 1E-7 prior to division to avoid divide by

zero errors.

Programming Notes:
1) The __stdcall calling convention is used for the function call.
2) Function returns no value (void), the result is passed back to the calling procedure in

array1.

A/DIC Inc. Page 6

3) Arrays are always passed by reference. To pass an entire array by reference in
Visual BASIC to a DLL written in C, only the first element of the array is passed by
reference. The DLL will have full access to the array since arrays are stored
sequentially in memory.

A/DIC Inc. Page 7

ArraySubtract

Description:
Subtracts two single dimension, single precision data arrays, array1 and array2, of

equal length from one another, storing the resulting array in array1.

Calling format:
ArraySubtract(array1, array2, #arrayelements)

Visual C++ declare:
extern "C" __declspec(dllimport) long WINAPI ArraySubtract(float array1[], float array2[],

long dataSize);

Visual C++ call:
{return value} = ArraySubtract(arrayname1, arrayname2, datasize);

Visual BASIC declare:
Public Declare Function ArraySubtract Lib "ADICLib_256R5.dll" (ByRef Array1 As _

Single, ByRef array2 As Single, ByVal dataSize As Long) As Long

Visual BASIC call:
{return value} = ArraySubtract(arrayname1(0), arrayname2(0), datasize)

LabView Function Prototype:
long ArrayAdd(float *arg1, float *arg2, long arg3);

Parameters:
arrayname1 = array to be subtracted from and the subtraction result array returned
arrayname2 = array to subtract from arrayname1
datasize = the number of elements in the single dimension array (128 or 256))
{return value} = Function evaluation status, A 1 indicates successful operation, a 0

indicates there was an error.

Algorithmn:
array1 = array1 - array2

Programming Notes:
1) The __stdcall calling convention is used for the function call.
2) Function returns no value (void), the result is passed back to the calling procedure in

array1.
3) Arrays are always passed by reference. To pass an entire array by reference in

Visual BASIC to a DLL written in C, only the first element of the array is passed by
reference. The DLL will have full access to the array since arrays are stored
sequentially in memory.

A/DIC Inc. Page 8

CloseDevice

Description:
Closes communication with the mux controller board. This command should be

executed prior to the top level software application exiting to cleanly close
communications with the board.

Calling format:
CloseDevice(deviceHandle)

Visual C++ declare:
extern "C" __declspec(dllimport) long WINAPI CloseDevice(FT_HANDLE lngHandle);

Visual C++ call:
{return value} = CloseDevice(deviceHandle);

Visual BASIC declare:
Public Declare Function CloseDevice Lib "ADICLib_256R5.dll" (ByVal lngHandle As _

Long) As Long

Visual BASIC call:
{return value} = CloseDevice(deviceHandle)

LabView Function Prototype:
long CloseDevice(long arg1);

Parameters:
deviceHandle = device handle address of type FT_HANDLE (see header file) returned

from the GetDeviceHandle function.
{return value} = Passed status variable from the function call. If the function completed

successfully status will return with a value of 1, otherwise an error code is returned,
see the status error definition help topic.

Programming Notes:
1) The __stdcall calling convention is used for the function call.

A/DIC Inc. Page 9

DoCalibrate

Description:
Calibrates the array

Calling format:
DoCalibrate(deviceHandle, coeffArray, arraySetVal, gskimVal, dacVhVal, dacVlVal,
 bPixMapArray, mxSize)

Visual C++ declare:
extern "C" __declspec(dllimport) long WINAPI DoCalibrate(FT_HANDLE lngHandle,

long coeff[], float arraySetVal, long* gskimVal, long* dacVhVal, long* dacVlVal, long
bPixMap[], long mxSize,);

Visual C++ call:
{return value} = DoCalibrate(deviceHandle, coeffArray, arraySetVal, gskimVal,

dacVhVal, dacVlVal, bPixMapArray, mxSize);

Visual BASIC declare:
Public Declare Function DoCalibrate Lib "ADICLib_256R5.dll" (ByVal lngHandle As _

Long, ByRef coeff As Long, ByVal arraySetVal As Single, ByRef gskimVal As _
Long, ByRef dacVhVal As Long, ByRef dacVlVal As Long, ByRef bPixMap As _
Long, ByVal mxSize As Long) As Long

Visual BASIC call:
{return value} = DoCalibrate(deviceHandle, coeffArray(0), arraySetVal, gskimVal,

dacVhVal, dacVlVal, bPixMapArray(0), mxSize)

LabView Function Prototype:
long DoCalibrate(long arg1, long *arg2, float arg3, long *arg4, long *arg5, long *arg6,

long *arg7, long arg8);

Parameters:
deviceHandle = device handle address of type FT_HANDLE (see header file) returned

from the GetDeviceHandle function.
coeffArray = Correction coefficient array returned that sets the per pixel DAC values for

correction arraySetVal = Target correction value for the array. This should not be set
to either of the supply rails. Typical value is 1.4

gskimVal = Returned value for the global skim value set automatically by the
DoCalibrate routine. Meaningless if the gskimUseVal has been set to anything other
than -1 by the SetGlobalSkimVal function

dacVhVal = Upper DAC reference value returned from the DoCalibrate procedure if
dacVhUseVal is set at -1 by the SetDacReferences procedure. Meaningless
otherwise.

A/DIC Inc. Page 10

dacVlVal = Lower DAC reference value returned from the DoCalibrate procedure if
dacVlUseVal is set at -1 by the SetDacReferences procedure. Meaningless
otherwise.

bPixMapArray = Bad pixel array map. Bad pixels are marked with a value of "1",
good pixels are marked as "0".

mxSize = Array size. Either 128 or 256.
{return value} = Passed status variable from the function call. If the function completed

successfully status will return with a value of 1, otherwise an error code is returned,
see the status error definition help topic.

Programming Notes:
1) The __stdcall calling convention is used for the function call.
2) Function returns a status variable as a long datatype, updated values for gskimVal,

dacVhVal, and dacVlVal are returned in the passed variables.
3) Arrays are always passed by reference. To pass an entire array by reference in

Visual BASIC to a DLL written in C, only the first element of the array is passed by
reference. The DLL will have full access to the array since arrays are stored
sequentially in memory.

A/DIC Inc. Page 11

Flux_P

Description:
Integrates Planck's blackbody equation and computes the bandpass blackbody flux for

a given temperature in photons/(sec-cm^2-sr).

Calling format:
ReturnValue = Flux_P(lambdaLow, lambdaHigh, temperature)

Visual C++ declare:
extern "C" __declspec(dllimport) double WINAPI Flux_P(double lambdaL, double

lambdaH, double temperature);

Visual C++ call:
ReturnValue = Flux_P(lambdaLow, lambdaHigh, temperature);

Visual BASIC declare:
Public Declare Function Flux_P Lib "ADICLib_256R5.dll" (ByVal lambda_lo As _

Double, ByVal lambda_hi As Double, ByVal temperature As Double) As Double

Visual BASIC call:
ReturnValue = Flux_P(lambdaLow, lambdaHigh, temperature)

LabView Function Prototype:
double Flux_P(double arg1, double arg2, double arg3);

Parameters:
lambdaLow = Lower bandpass wavelength in microns
lambdaHigh = Upper bandpass wavelength in microns
temperature = Temperature in Kelvin

Algorithmn:
Performs a trapizoidal integration of Planck's equation using a delta lambda of 100

picometers per micron.

Programming Notes:
1) The __stdcall calling convention is used for the function call.
2) Function returns a double precision value

A/DIC Inc. Page 12

Flux_W

Description:
Integrates Planck's blackbody equation and computes the bandpass blackbody flux for

a given temperature in Watts/(cm^2-sr).

Calling format:
ReturnValue = Flux_W(lambdaLow, lambdaHigh, temperature)

Visual C++ declare:
extern "C" __declspec(dllimport) double WINAPI Flux_W(double lambdaL, double

lambdaH, double temperature);

Visual C++ call:
ReturnValue = Flux_W(lambdaLow, lambdaHigh, temperature);

Visual BASIC declare:
Public Declare Function Flux_W Lib "ADICLib_256R5.dll" (ByVal lambda_lo As _

Double, ByVal lambda_hi As Double, ByVal temperature As Double) As Double

Visual BASIC call:
ReturnValue = Flux_W(lambdaLow, lambdaHigh, temperature)

LabView Function Prototype:
double Flux_W(double arg1, double arg2, double arg3);

Parameters:
lambdaLow = Lower bandpass wavelength in microns
lambdaHigh = Upper bandpass wavelength in microns
temperature = Temperature in Kelvin

Algorithmn:
Performs a trapizoidal integration of Planck's equation using a delta lambda of 100

picometers per micron.

Programming Notes:
1) The __stdcall calling convention is used for the function call.
2) Function returns a double precision value

A/DIC Inc. Page 13

GetBoard_Handle

Description:
Returns a PVOID type number which represents the device handle of the Mux

Controller Board for the given board index number, opens and sets up all
communication settings to the mux controller board "boardnumber". The number
returned is the address number to be passed to all other API functions requiring a
device handle when communicating to that particular board. The GetBoard_Handle
function should be the first function called for any communications to the hardware.

Calling format:
boardHandle = GetBoard_Handle(boardnumber)

Visual C++ declare:
extern "C" __declspec(dllimport) PVOID WINAPI GetBoard_Handle(long boardnumber);

Visual C++ call:
boardHandle = GetBoard_Handle(boardnumber);

Visual BASIC declare:
Public Declare Function GetBoard_Handle Lib "ADICLib_256R5.dll" (ByVal _

boardnumber As Long) As Long

Visual BASIC call:
boardHandle = GetBoard_Handle(boardnumber)

LabView Function Prototype:
long GetBoard_Handle(long arg1);

Parameters:
boardHandle = device handle address of type FT_HANDLE (see header file) returned

from the GetBoard_Handle function.

boardnumber = index number reference for each controller board attached to the

computer where boardnumber is a number from 1 to NumberOfBoards, where
NumberOfBoards is the number returned back from the GetNumBoards functions
(see GetNumBoards function). To get the boardhandle and open the first board
attached to the system, pass boardnumber = 1 to the GetBoard_Handle function, to
get the boardhandle and open the second board attached to the system pass
boardnumber = 2 to the GetBoard_Handle function, and so on up the maximum
number of currently attached controller boards to the system determined from the
GetNumBoards function. Any number outside the range 1 to NumberOfBoards will
produce an error.

A/DIC Inc. Page 14

Programming Notes:
1) The __stdcall calling convention is used for the function call.

A/DIC Inc. Page 15

GetData2

Note: This command can only be used with 256 element arrays using the RevG

multiplexers The type of mux is indicated by the muxtype bit returned by GetQuery3.
A muxtype = 1 indicates a RevG multiplexer

Description:
Retrieves an windowed array of data values (16 bit conversions) from all channels

(pixels) of the detector/multiplexer array. The format of the data returned from the
GetData2 procedure is a single precision, single dimension data array of variable
length from 2 to 256 elements depending on array window size. The data format is in
volts with a range of 0v to Vmax, where Vmax is typically ~ 5.00 Volts when the
conversion factor is at it's default value of 13107 (see SetConversionRef procedure).

Calling format:
GetData2(deviceHandle, LAdd, RAdd, RoDir, MxData, bPixMap)

Visual C++ declare:
extern "C" __declspec(dllimport) long WINAPI GetData(FT_HANDLE lngHandle, long*

LAdd, long* RAdd, long* RoDir, float MxData[], long bPixMap[]);

Visual C++ call:
{return value} = GetData(deviceHandle, LAdd, RAdd, RoDir, MxData, bPixMap);

Visual BASIC declare:
Public Declare Function GetData Lib "ADICLib_256R5.dll" (ByVal lngHandle As Long, _

ByRef LAdd As Long, ByRef RAdd As Long, ByRef RoDir As Long, ByRef _
MxData As Single, ByRef bPixMap As Long) As Long

Visual BASIC call:
{return value} = GetData(deviceHandle, LAdd, RAdd, RoDir, MxData(0), bPixMap(0))

LabView Function Prototype:
long GetData(long arg1, long *arg2, long *arg3, long *arg4, float *arg5, long *arg6);

Parameters:
deviceHandle = device handle address of type FT_HANDLE (see header file) returned

from the GetDeviceHandle function.
LAdd = Passed value sets (and returns) the start pixel of the readout window, if the

array is reading out left to right If the readout is right to left this value sets the end
pixel. Regardless of the direction of the LAdd (or Left Address) is the number of
pixels to skip on the left side of the array. The valid is 0 to 127, with 0 being the
value to readout the entire left side of the array, and 127 reading out only a single
pixel from the left side (the 128th pixel). On return the value represents the value
returned by the array. This value should match the value sent, but if it does not it, is

A/DIC Inc. Page 16

a clear indicator that the software and the hardware no longer have the same
settings.

RAdd = Passed value sets (and returns) the end pixel of the readout window, if the
array is reading out left to right. If the readout is right to left this value sets the start
pixel. Regardless of the direction of the RAdd (or Right Address) is the number of
pixels to skip on the right side of the array. The valid is 0 to 127, with 0 being the
value to readout the entire right side of the array, and 127 reading out only a single
pixel from the right side (the 129th pixel). On return the value represents the value
returned by the array. This value should match the value sent, but if it does not, it is
a clear indicator that the software and the hardware no longer have the same
settings.

RoDir = Readout direction control flag. A low sets a Left to Right readout and a high is
the reverse direction. The returned value is the direction control setting inside the
hardware, it should always match the value sent. If it does not, it is a clear indicator
that the software and the hardware no longer have the same settings.

MxData = Single precision data array of detector pixel values returned by the GetData
procedure.

bPixMapArray = Bad pixel array map. Bad pixels are marked with a value of "1", good
pixels are marked as "0".

{return value} = Passed status variable from the function call. If the function completed
successfully status will return with a value of 1, otherwise an error code is returned,
see the status error definition help topic.

Programming Notes:
1) The __stdcall calling convention is used for the function call.
2) Function returns a status variable as a long datatype, detector data is returned in the

passed variable MxData array
3) Arrays are always passed by reference. To pass an entire array by reference in

Visual BASIC to a DLL written in C, only the first element of the array is passed by
reference. The DLL will have full access to the array since arrays are stored
sequentially in memory.

A/DIC Inc. Page 17

GetNumBoards

Description:
Returns the number, of data type long, of Multiplexer Controller boards currently

attached to the computer system.

Calling format:
NumberOfBoards = GetNumBoards()

Visual C++ declare:
extern "C" __declspec(dllimport) long WINAPI GetNumBoards(void);

Visual C++ call:
NumberOfBoards = GetNumBoards();

Visual BASIC declare:
Public Declare Function GetNumBoards Lib "ADICLib_256R5.dll" () As Long

Visual BASIC call:
NumberOfBoards = GetNumBoards()

LabView Function Prototype:
long GetNumBoards(void);

Parameters:
NumberOfBoards = The number of Multiplexer Controller boards currently powered up

and attached to the computer system returned by the GetNumBoards function.
There is no fixed limit in the API as to the number of boards allowed to be attached
to the system and is only limited by the number of available USB interfaces on the
computer system and the number of unique controller boards handled by the top
level user developed application.

Programming Notes:
1) The __stdcall calling convention is used for the function call.

A/DIC Inc. Page 18

GetQuery3

Description:
Returns the Mux controller board's firmware checksum in the cksum variable passed to

the routine, the serial number of the Mux controller board in the serialnumb variable
passed to the routine, the multiplexer type in the muxtype variable passed to the
routine, and the board description as an ASCII code array from the USB EEPROM
data.

Calling format:
GetQuery3(devHandle, cksum, serialnumb, muxtype, Descript)

Visual C++ declare:
extern "C" __declspec(dllimport) long WINAPI GetQuery3(FT_HANDLE lngHandle,

long* cksum, long* serialnumb, long* muxtype, long Descript[]);

Visual C++ call:
{return value} = GetQuery3(devHandle, cksum, serialnumb, muxtype, Descript);

Visual BASIC declare:
Public Declare Function GetQuery3 Lib "ADICLib_256R5.dll" (ByVal lngHandle As _

Long, ByRef cksum As Long, ByRef serialnumb As Long, ByRef muxtype As Long, _
ByRef Descript As Long) As Long

Visual BASIC call:
{return value} = Call GetQuery3(devHandle, cksum, serialnumb, muxtype, Descript(0))

LabView Function Prototype:
long GetQuery3(long arg1, long *arg2, long *arg3, long *arg4, long *arg5);

Parameters:
deviceHandle = device handle address of type FT_HANDLE (see header file) returned

from the GetDeviceHandle function.
cksum = Returned value of the checksum of the Mux Controller Board's firmware
serialnumb = Returned value of the serial number of the Mux Controller Board
muxtype = Returned value that identifies which revision of multiplexer is attached to the

interface board. A 0 identifies the Rev F multiplexer and a 1 identifies the Rev G
multiplexer.

Descript = Returned array of ASCII codes representing the text string description of the
board. Returned as a long datatype ASCII code array to get around string passing
differences between Visual C++ and Visual BASIC. For Visual BASIC, rebuild the
text string in a For|Next loop of 32 loops with the code:

 Description = ""
 For x = 0 to 31

A/DIC Inc. Page 19

 Description = Description + CHR(Descript(x))
 Next x

{return value} = Passed status variable from the function call. If the function completed

successfully status will return with a value of 1, otherwise an error code is returned,
see the status error definition help topic.

Programming Notes:
1) The __stdcall calling convention is used for the function call.

A/DIC Inc. Page 20

HideBadPixels_Brd

Description:
Flag that toggles whether bad pixels are shown or masked in the data returned by the

GetData procedure. A value of "1" will mask bad pixels, a "0" will show bad pixels.
The default value of the HideBadPixels flag is internally set to "1" to perform bad
pixel replacement. If the HideBadPixels procedure is never called, bad pixels will
always be replaced based on the bad pixel map stored in the PIC. This function
operates on individual array controller boards in a multi-board system by passing the
desired board's device handle to the function.

Calling format:
HideBadPixels_Brd(devHandle, numb)

Visual C++ declare:
extern "C" __declspec(dllimport) long WINAPI HideBadPixels_Brd(FT_HANDLE

lngHandle, long numb);

Visual C++ call:
{return value} = HideBadPixels_Brd(devHandle, numb);

Visual BASIC declare:
Public Declare Function HideBadPixels_Brd Lib "ADICLib_256R5.dll" (ByVal devHandle

as Long, ByVal numb As Long) As Long

Visual BASIC call:
{return value} = HideBadPixels_Brd(devHandle, numb)

LabView Function Prototype:
long HideBadPixels_Brd(long arg1, long arg2);

Parameters:
deviceHandle = device handle address of type FT_HANDLE (see header file) returned

from the GetDeviceHandle function.
numb = flag that sets whether bad pixels are masked or show in the data from the

GetData procedure. A value of "1" will mask bad pixels, a "0" will show bad pixels.
{return value} = Returned function error status. A "1" indicates successful completion of

the function call.

Programming Notes:
1) The __stdcall calling convention is used for the function call.

A/DIC Inc. Page 21

MarkBadPixel

Description:
Sends the bad pixel array map to the PIC processor on the Mux Controller Board. To

store the bad pixel map into the controller board's EEPROM for permanent setting,
use the StoreAll procedure.

Calling format:
MarkBadPixel(devHandle, mxSize, numBPix, bpMap)

Visual C++ declare:
extern "C" __declspec(dllimport) long WINAPI MarkBadPixel(FT_HANDLE lngHandle,

long mxSize, long numBPix, long bpMap[]);

Visual C++ call:
{return value} = MarkBadPixel(devHandle, mxSize, numBPix, bpMap);

Visual BASIC declare:
Public Declare Function MarkBadPixel Lib "ADICLib_256R5.dll" (ByVal lngHandle As

Long, ByVal mxSize As Long, _ ByVal numBPix As Long, ByRef bpMap As
Long) As Long

Visual BASIC call:
{return value} = MarkBadPixel(devHandle, mxSize, numBPix, bpMap(0))

LabView Function Prototype:
long MarkBadPixel(long arg1, long arg2, long arg3, long *arg4);

Parameters:
deviceHandle = device handle address of type FT_HANDLE (see header file) returned

from the GetDeviceHandle function.
mxSize = Size of the array, either 128 or 256
numBPix = Number of bad pixels in the array. Must equal the number of pixels marked

bad in the bad pixel array map
bpMap = Array indicating which pixels are bad. Bad pixels are marked with a "1", good

pixels are marked with a "0"
{return value} = Passed status variable from the function call. If the function completed

successfully status will return with a value of 1, otherwise an error code is returned,
see the status error definition help topic.

Programming Notes:
1) The __stdcall calling convention is used for the function call.

A/DIC Inc. Page 22

ReadE2Block

Description:
Allows the user to read data previousl stored in the unused portion of the PIC's NVRAM

using the SaveE2Block command. There are 400 unused bytes of memory available
inside the PIC. This memory is in the form of E2PROM and is rated typically at 1
million erase/write cycles with data retention of typically 40 years. This memory is
intended for storage of calibration data or other semi permanent configuration data.
Data can be read in any block size from 1 byte to 400 bytes. The address offset is in
the range of 0 to 399, and offset + number of bytes must not exceed 400 or the
routine will kick out with an error and bypass execution.

Calling format:
ReadE2Block(devHandle, numByte, baseAddress, e2data)

Visual C++ declare:
extern "C" __declspec(dllimport) long WINAPI ReadE2Block(FT_HANDLE lngHandle,

long numByte, long baseAddress, long e2Data[]);

Visual C++ call:
{return value} = ReadE2Block(devHandle, numByte, baseAddress, e2Data);

Visual BASIC declare:
Public Declare Function ReadE2Block Lib "ADICLib_256R5.dll" (ByVal lngHandle _

As Long, ByVal numByte As Long, ByVal baseAddress, ByRef e2Data As Long) _
As Long

Visual BASIC call:
{return value} = ReadE2Block(devHandle, numByte, baseAddress, e2Data(0))

LabView Function Prototype:
long ReadE2Block(long arg1, long arg2, long arg3, long *arg4);

Parameters:
deviceHandle = device handle address of type FT_HANDLE (see header file) returned

from the GetDeviceHandle function.
numBytes = The number of bytes to read from the NVRAM memory. Valid values are 1

to 400
baseAddress = The address of the first byte to read. Valid values are 0 to 399 (0x18F

hex). Note: baseAddress + numBytes should never exceed 400, to do so will exit
the function prematurely without executing the EEPROM read.

e2Data = Data array of bytes read from the PIC's NVRAM

A/DIC Inc. Page 23

{return value} = Passed status variable from the function call. If the function completed
successfully status will return with a value of 1, otherwise an error code is returned,
see the status error definition help topic.

Programming Notes:
1) The __stdcall calling convention is used for the function call.
2) Function returns a data type of long.
3) Arrays are always passed by reference. To pass an entire array by reference in

Visual BASIC to a DLL written in C, only the first element of the array is passed by
reference. The DLL will have full access to the array since arrays are stored
sequentially in memory.

A/DIC Inc. Page 24

ReadTecADChannel

Note: New function for R5 interface electronics ONLY

Description:
Reads one of the analog monitor voltages available on the TE controller. The available

analog signals are:
 0) ITEC = Current through theTE cooler element
 1) TMON = Measure of temp stability
 2) THRMB = Additional thermistor voltage (if installed)
 3) VTEC = Voltage across the TE cooler element
 4) VREF = TE controller reference voltage

Calling format:
ReadTecADChannel(devHandle, NumAvg, ADValue)

Visual C++ declare:
extern "C" __declspec(dllimport) long WINAPI ReadTecADChannel(FT_HANDLE

lngHandle, double NumAvg, double* ADValue);

Visual C++ call:
{return value} = ReadTecADChannel(devHandle, NumAvg, ADValue);

Visual BASIC declare:
Public Declare Function ReadTecADChannel Lib "ADICLib_256R5.dll" (ByVal

lngHandle As Long, ByVal NumAvg as Double, ByRef ADValue As Double) As Long

Visual BASIC call:
{return value} = ReadTecADChannel(devHandle, NumAvg, ADValue)

LabView Function Prototype:
long ReadTecADChannel(long arg1, double arg2, double *arg3);

Parameters:
deviceHandle = device handle address of type FT_HANDLE (see header file) returned

from the GetDeviceHandle function.
NumAvg = Number of samples to average together. Must be a number between 1 and

15, Where 1 represents no averaging
ADValue = Returned value of the analog signal in digital counts. The A/D converter is

12 bits spanning a 0 to 5 Volt input range. To convert counts to voltage use the
equation: {AD Voltage} = ADValue * 5 / 4095. To convert the returned voltages to
values use the following equeations

0) ITEC = [{AD Voltage} - VREF / 2] * 4 in Amps (positive for cooling, negative
for heating)

A/DIC Inc. Page 25

1) TMON = [{AD Voltage} - VREF / 2] * 1000 / 1.57 in miliKelvin TMON is the
voltage at the output of the bridge error amp. It provides an approximate look at
how far from the setpoint temp the loop is controlling to. The sensitivity of the
cooler loop is based on the value at -10C which is 1.57mV/mK at the TMON
node. This is based on default circuit values.
2) THRMB - as of the authoring of this help file no second thermistor is installed
3) VTEC = [{AD Voltage} - VREF / 2] * 4.5 in Volts (positive for cooling, negative
for heating)
4) VREF = {AD Voltage} in Volts

{return value} = Passed status variable from the function call. If the function completed
successfully status will return with a value of 1, otherwise an error code is returned,
see the status error definition help topic.

Programming Notes:
1) The __stdcall calling convention is used for the function call.

A/DIC Inc. Page 26

ReadTecStatus

Note: New function for R5 interface electronics ONLY

Description:
Returns the status byte from the TE controller.

Calling format:
ReadTecStatus(devHandle, StatusVal)

Visual C++ declare:
extern "C" __declspec(dllimport) long WINAPI ReadTecStatus(FT_HANDLE lngHandle,

long* StatusVal);

Visual C++ call:
{return value} = ReadTecStatus(devHandle, StatusVal);

Visual BASIC declare:
Public Declare Function ReadTecStatus Lib "ADICLib_256R5.dll" (ByVal lngHandle As

Long, ByRef StatusVal As Long) As Long

Visual BASIC call:
{return value} = ReadTecStatus(devHandle, StatusVal)

LabView Function Prototype:
long ReadTecStatus(long arg1, long *arg2);

Parameters:
deviceHandle = device handle address of type FT_HANDLE (see header file) returned

from the GetDeviceHandle function.
StatusVal = returned value has eight status bits 0 through 7, corresponding to the LSb

through MSb of the StatusVal byte. As of this code version only two bits have
meaning: Bit 0 indicates the TEC operation status which is either ON (bit 0 = 1) or
OFF (bit 0 = 0). Bit 4 indicates the temperature stability of the cooler which iseither
stable (bit 4 = 1) or not stable (bit 4 = 0). During cool down the stable bit will be clear
and upon reaching the set point temperature the stable bit will go high.

{return value} = Passed status variable from the function call. If the function completed
successfully status will return with a value of 1, otherwise an error code is returned,
see the status error definition help topic.

Programming Notes:
1) The __stdcall calling convention is used for the function call.

A/DIC Inc. Page 27

ReadTeSetPoint

Note: New function for R5 interface electronics ONLY

Description:
Reads the current set point temperature of the TE controller.

Calling format:
ReadTeSetPoint(devHandle, SPTval)

Visual C++ declare:
extern "C" __declspec(dllimport) long WINAPI ReadTeSetPoint(FT_HANDLE

lngHandle, long* SPTval);

Visual C++ call:
{return value} = ReadTeSetPoint(devHandle, SPTval);

Visual BASIC declare:
Public Declare Function ReadTeSetPoint Lib "ADICLib_256R5.dll" (ByVal lngHandle As

Long, ByRef SPTval As Long) As Long

Visual BASIC call:
{return value} = ReadTeSetPoint(devHandle, SPTval)

LabView Function Prototype:
long ReadTeSetPoint(long arg1, long *arg2);

Parameters:
deviceHandle = device handle address of type FT_HANDLE (see header file) returned

from the GetDeviceHandle function.
SPTval = returned value representing the setpoint of the TE contoller The number is in

the range 0 to 255, which corresponds to the 8 bit DAC setting used to control the
temperature (see the SetTESetPoint command).

{return value} = Passed status variable from the function call. If the function completed
successfully status will return with a value of 1, otherwise an error code is returned,
see the status error definition help topic.

Programming Notes:
1) The __stdcall calling convention is used for the function call.

A/DIC Inc. Page 28

RecallTeSetPoint

Note: New function for R5 interface electronics ONLY

Description:
Forces the TE controller to load the setpoint temperature stored in EEPROM and make

it the current setpoint temperature. The new value is then returned.

Calling format:
RecallTeSetPoint(devHandle, SPTval)

Visual C++ declare:
extern "C" __declspec(dllimport) long WINAPI RecallTeSetPoint(FT_HANDLE

lngHandle, long* SPTval);

Visual C++ call:
{return value} = RecallTeSetPoint(devHandle, SPTval);

Visual BASIC declare:
Public Declare Function RecallTeSetPoint Lib "ADICLib_256R5.dll" (ByVal lngHandle

As Long, ByRef SPTval As Long) As Long

Visual BASIC call:
{return value} = RecallTeSetPoint(devHandle, SPTval)

LabView Function Prototype:
long RecallTeSetPoint(long arg1, long *arg2);

Parameters:
deviceHandle = device handle address of type FT_HANDLE (see header file) returned

from the GetDeviceHandle function.
SPTval = returned value representing the setpoint of the TE contoller The number is in

the range 0 to 255, which corresponds to the 8 bit DAC setting used to control the
temperature (see the SetTESetPoint command).

{return value} = Passed status variable from the function call. If the function completed
successfully status will return with a value of 1, otherwise an error code is returned,
see the status error definition help topic.

Programming Notes:
1) The __stdcall calling convention is used for the function call.

A/DIC Inc. Page 29

RestoreAll

Description:
Retrieves all stored operational configuration data from the MUX controller board's

NVRAM such as stored integration time, DAC VH & VL settings, global skim setting,
mux size, well size, detector bias setting, bad pixel map array, and per pixel
correction coefficients so that a prior operational configuration can be applied for the
detector array/mux assembly.

Calling format:
RestoreAll(devHandle, BaseSettings, bpMap, coeff)

Visual C++ declare:
extern "C" __declspec(dllimport) long WINAPI RestoreAll(FT_HANDLE lngHandle, long

BaseSettings[], long bpMap[], long coeff[]);

Visual C++ call:
{return value} = RestoreAll(devHandle, BaseSettings, bpMap, coeff);

Visual BASIC declare:
Public Declare Function RestoreAll Lib "ADICLib_256R5.dll" (ByVal lngHandle As Long,

ByRef BaseSettings As Long, ByRef bpMap As Long, ByRef coeff As Long) As Long

Visual BASIC call:
{return value} = RestoreAll(devHandle, BaseSettings(0), bpMap(0), coeff(0))

LabView Function Prototype:
long RestoreAll(long arg1, long *arg2, long *arg3, long *arg4);

Parameters:
deviceHandle = device handle address of type FT_HANDLE (see header file) returned

from the GetDeviceHandle function.
BaseSettings = A 16 element array containing operational configuration data for the

mux. The array elements are defined as follows:

 BaseSettings(0) = Integration Time
 BaseSettings(1) = NOT USED, value will ALWAYS be 0
 BaseSettings(2) = Global Skim value
 BaseSettings(3) = NOT USED, value will ALWAYS be 0
 BaseSettings(4) = DACVh value
 BaseSettings(5) = NOT USED, value will ALWAYS be 0
 BaseSettings(6) = DACVl value
BaseSettings(7) = NOT USED, value will ALWAYS be 0
BaseSettings(8) = NOT USED, value will ALWAYS be 0
BaseSettings(9) = Detector Bias

A/DIC Inc. Page 30

BaseSettings(10) = Mux Size
BaseSettings(11) = Direction Flag
BaseSettings(12) = Number of Bad Pixels
BaseSettings(13) = Integration Well Size
BaseSettings(14) = Left wndow address
BaseSettings(15) = Right window address

bpMap = Array indicating which pixels are bad. Bad pixels are marked with a "1", good

pixels are marked with a "0"
coeffArray = Correction coefficient array returned that sets the per pixel DAC values for

correction
{return value} = Passed status variable from the function call. If the function completed

successfully status will return with a value of 1, otherwise an error code is returned,
see the status error definition help topic.

Base Settings Array Notes:
1) GlobalSkim value in volts is computed by:
 GblSkimValue = 2.083 * (BaseSettings(2) / 1023) + 0.417

2) DacVH value in volts is computed by:
 DacVHValue = 1.786 * (BaseSettings(4) / 1023) + 0.714

3) DacVL value in volts is computed by:
 DacVLValue = 1.786 * (BaseSettings(6) / 1023) + 0.714

4) DetBias value in volts is computed by:
 DetBiasValue = 6.0 * (BaseSettings(9) / 1023) + 6.0

5) Integration time in us is computed by:
 IntTime = BaseSettings(0) * 3.333 (in us)

6) BaseSetting(10) = 256 for a 256 array, and 128 for a 128 array

7) BaseSetting(11) = 0 for left to right, and 1 for right to left

8) BaseSetting(13) = index value for Wellsize. See the wsize parameter in the

SetWellSize help

9) BaseSetting(14) = Left window address: 0 to 127. Equal to the number of pixels on

the left side of the array to skip during readout

10) BaseSetting(15) = Right window address: 0 to 127. Equal to the number of pixels on
the right side of the array to skip during readout.

A/DIC Inc. Page 31

Programming Notes:
1) The __stdcall calling convention is used for the function call.
2) Function returns a status variable of datatype long, the results are passed back to the

calling procedure
 in the passed variables
3) Arrays are always passed by reference. To pass an entire array by reference in

Visual BASIC
 to a DLL written in C, only the first element of the array is passed by reference.
 The DLL will have full access to the array since arrays are stored sequentially in

memory.

A/DIC Inc. Page 32

SaveE2Block

Description:
Allows the user to save data to the unused portion of the PIC's NVRAM. There are 400

unused bytes of memory available inside the PIC. This memory is in the form of
E2PROM and is rated typically at 1 million erase/write cycles with data retention of
typically 40 years. This memory is intended for storage of calibration data or other
semi permanent configuration data. Data can be stored and read in any block size
from 1 byte to 400 bytes. To read the memory see the ReadE2Block command.

Note: Each byte read/write cycle takes 4ms, so this command can take in the range of a
second or more to execute when writing a 400 byte block (1.6 seconds for all 400
bytes). The address offset is in the range of 0 to 399, and offset + number of bytes
must not exceed 400 or the routine will kick out with an error and bypass execution.

Calling format:
SaveE2Block(devHandle, numByte, baseAddress, e2data)

Visual C++ declare:
extern "C" __declspec(dllimport) long WINAPI SaveE2Block(FT_HANDLE lngHandle,

long numByte, long baseAddress, long e2Data[]);

Visual C++ call:
{return value} = SaveE2Block(devHandle, numByte, baseAddress, e2Data);

Visual BASIC declare:
Public Declare Function SaveE2Block Lib "ADICLib_256R5.dll" (ByVal lngHandle As

Long, ByVal numByte As Long, ByVal baseAddress, ByRef e2Data As Long) As
Long

Visual BASIC call:
{return value} = SaveE2Block(devHandle, numByte, baseAddress, e2Data(0))

LabView Function Prototype:
long SaveE2Block(long arg1, long arg2, long arg3, long *arg4);

Parameters:
deviceHandle = device handle address of type FT_HANDLE (see header file) returned

from the GetDeviceHandle function.
numBytes = The number of bytes to write to the NVRAM. Valid values are 1 to 400
baseAddress = The address of the first byte to store. Valid values are 0 to 399 (0x18F

hex). Note: baseAddress + numBytes can never exceed 400, to do so will exit the
function prematurely without executing the EEPROM write.

e2Data = Data array of bytes to store into the PIC's NVRAM

A/DIC Inc. Page 33

{return value} = Passed status variable from the function call. If the function completed
successfully status will return with a value of 1, otherwise an error code is returned,
see the status error definition help topic.

Programming Notes:
1) The __stdcall calling convention is used for the function call.
2) Function returns a data type of long.
3) Arrays are always passed by reference. To pass an entire array by reference in

Visual BASIC to a DLL written in C, only the first element of the array is passed by
reference. The DLL will have full access to the array since arrays are stored
sequentially in memory.

A/DIC Inc. Page 34

SendAllCoeff

Description:
Sends the per pixel correction coefficient array to the mux via the PIC processor. The

PIC processor applies the per pixel correction coefficients to the Mux for the on-
plane offset correction. The coefficient array resident in the PIC's run time memory is
not stored to the PIC's NVRAM with the SendAllCoeff command, to store the
coefficients to the PIC's NVRAM use the StoreAll command.

Calling format:
SendAllCoeff(devHandle, mxSize, coeff)

Visual C++ declare:
extern "C" __declspec(dllimport) long WINAPI SendAllCoeff(FT_HANDLE lngHandle,

long mxSize, long coeff[]);

Visual C++ call:
{return value} = SendAllCoeff(devHandle, mxSize, coeff);

Visual BASIC declare:
Public Declare Function SendAllCoeff Lib "ADICLib_256R5.dll" (ByVal lngHandle As

Long, ByVal mxSize As Long, ByRef coeff As Long) As Long

Visual BASIC call:
{return value} = SendAllCoeff(devHandle, mxSize, coeff(0))

LabView Function Prototype:
long SendAllCoeff(long arg1, long arg2, long *arg3);

Parameters:
deviceHandle = device handle address of type FT_HANDLE (see header file) returned

from the GetDeviceHandle function.
mxSize = the number of elements in the single dimension array (128 or 256)
coeff = Correction coefficient array sent that sets the per pixel DAC values for correction
{return value} = Passed status variable from the function call. If the function completed

successfully status will return with a value of 1, otherwise an error code is returned,
see the status error definition help topic.

Programming Notes:
1) The stdcall calling convention is used for the function call.
2) Function returns a status variable of datatype long
3) Arrays are always passed by reference. To pass an entire array by reference in

Visual BASIC to a DLL written in C, only the first element of the array is passed by

A/DIC Inc. Page 35

reference. The DLL will have full access to the array since arrays are stored
sequentially in memory.

A/DIC Inc. Page 36

SetConversionRef_Brd

Description:
Sets the software D/A conversion factor used in the GetData procedure for the

conversion of the 16 bit (0 to 65535) sampled data retrieved from the PIC by the
GetData command to format the data into an analog representation in volts. The
default value of the conversion factor is 13107 and ordinarily does not need to be
changed. The GetData command returns data in volts in the range of 0v - Vmax.
This function operates on individual array controller boards in a multi-board system
by passing the desired board's device handle to the function.

The A/D conversion factor is used internally by the GetData routine via the following

formula:

{floating point value) = {16 bit A/D conversion value from the PIC} / D/A conversion

factor

which becomes {16 bit A/D conversion value from the PIC} / 13107 when the default

value is used.

Calling format:
SetConversionRef_Brd(devHandle, numb)

Visual C++ declare:
extern "C" __declspec(dllimport) long WINAPI SetConversionRef_Brd(FT_HANDLE

lngHandle, long numb);

Visual C++ call:
{return value} = SetConversionRef_Brd(devHandle, long numb);

Visual BASIC declare:
Public Declare Function SetConversionRef_Brd Lib "ADICLib_256R5.dll" (ByVal

devHandle as Long, ByVal numb As Long) As Long

Visual BASIC call:
{return value} = SetConversionRef_Brd(devHandle, numb)

LabView Function Prototype:
long SetConversionRef_Brd(long arg1, long arg2);

Parameters:
deviceHandle = device handle address of type FT_HANDLE (see header file) returned

from the GetDeviceHandle function.
numb = D/A convert value for the software conversion of the digitally sampled data

retrieved from the PIC in the GetData procedure to convert the data to an analog

A/DIC Inc. Page 37

representation in volts. The default value is set internally at 13107 until it is changed
by the SetConversionRef_Brd command.

{return value} = Returned function error status. A "1" indicates successful completion of
the function call.

Programming Notes:
1) The __stdcall calling convention is used for the function call.

A/DIC Inc. Page 38

SetDacGSkim

Description:
Sets the value of the global skim applied to the multiplexer. The global skim value is

represented by a 10bit digital word, the valid range is 0 to 1023, which equates to a
global skim voltage range of 0.417 to 2.50Volts. A value "0" is no skim, a value of
1023 is maximum skim.

Calling format:
SetDacGSkim(devHandle, setValue)

Visual C++ declare:
extern "C" __declspec(dllimport) long WINAPI SetDacGSkim(FT_HANDLE lngHandle,

long setValue);

Visual C++ call:
{return value} = SetDacGSkim(devHandle, setValue);

Visual BASIC declare:
Public Declare Function SetDacGSkim Lib "ADICLib_256R5.dll" (ByVal lngHandle As

Long, ByVal setValue As Long, ByVal setValue As Long) As Long

Visual BASIC call:
{return value} = SetDacGSkim(devHandle, setValue)

LabView Function Prototype:
long SetDacGSkim(long arg1, long arg2);

Parameters:
deviceHandle = device handle address of type FT_HANDLE (see header file) returned

from the GetDeviceHandle function.
setValue = Digital word representing the value of the global skim to set in the mux. The

valid range for setValue is 0 to 1023
{return value} = Passed status variable from the function call. If the function completed

successfully status will return with a value of 1, otherwise an error code is returned,
see the status error definition help topic.

Programming Notes:
1) The __stdcall calling convention is used for the function call.

A/DIC Inc. Page 39

SetDacReferences_Brd

Description:
Sets override values for the DAC references for the per pixel DACs for the DoCalibrate

calibration procedure. The values for the DAC references are set by a 10bit digital
word, the valid range is -1 and 0 to 1023. The DAC references are normally
determined automatically by the DoCalibrate command, set by inputing a -1 for
numbVH and numbVL with the SetDacReferences_Brd command or left set to the
DLL initialized values of -1 by never calling the SetDacReferences_Brd command.
Inputing values of 0 to 1023 for numbVH and numbVL allows overriding of the
automatic calculation of the references to be set manually to the input numbVH and
numbVL values. This function operates on individual array controller boards in a
multi-board system by passing the desired board's device handle to the function.

Setting numbVH and numbVL to -1 (or leaving the DLL initialization state at -1) sets the

internal flags dacVhUseVal and dacVlUseVal to -1 which tells the DoCalibrate
procedure to automatically compute the DAC references.

Generally the DAC references should be allowed to be computed automatically by the

DoCalibrate command so the SetDacReferences_Brd should not normally ever be
needed and dacVhUseVal and dacVlUseVal left to their initialized values of -1.

Calling format:
SetDacReferences_Brd(devHandle, numbVH, numbVL)

Visual C++ declare:
extern "C" __declspec(dllimport) long WINAPI SetDacReferences_Brd(FT_HANDLE

lngHandle, long numbVH, long numbVL);

Visual C++ call:
{return value} = SetDacReferences_Brd(devHandle, numbVH, numbVL);

Visual BASIC declare:
Public Declare Function SetDacReferences_Brd Lib "ADICLib_256R5.dll" (ByVal

devHandle as Long, ByVal numbVH As Long, ByVal numbVL As Long) As Long

Visual BASIC call:
{return value} = SetDacReferences_Brd(devHandle, numbVH, numbVL)

LabView Function Prototype:
long SetDacReferences_Brd(long arg1, long arg2, long arg3);

Parameters:
deviceHandle = device handle address of type FT_HANDLE (see header file) returned

from the GetDeviceHandle function.

A/DIC Inc. Page 40

numbVH = Digital word set value for the upper DAC reference for use during the
calibration procedure. The valid range for setValue is -1 and 0 to 1023.

numbVL = Digital word set value for the lower DAC reference for use during the
calibration procedure. The valid range for setValue is -1 and 0 to 1023.

{return value} = Returned function error status. A "1" indicates successful completion of
the function call.

Programming Notes:
1) The __stdcall calling convention is used for the function call.

A/DIC Inc. Page 41

SetDacVH

Description:
Sets the upper DAC reference for the per pixel correction DAC on the mux controller

board. The the DACVh value is set by a 10 bit word, the valid range for the DACVh
value is 0 to 1023, which equates to a DacVh voltage range of 0.714 to 2.5 volts.

Calling format:
SetDacVH(devHandle, setValue)

Visual C++ declare:
extern "C" __declspec(dllimport) long WINAPI SetDacVH(FT_HANDLE lngHandle, long

setValue);

Visual C++ call:
{return value} = SetDacVH(devHandle, setValue);

Visual BASIC declare:
Public Declare Function SetDacVH Lib "ADICLib_256R5.dll" (ByVal lngHandle As Long,

ByVal setValue As Long) As Long

Visual BASIC call:
{return value} = SetDacVH(devHandle, setValue)

LabView Function Prototype:
long SetDacVH(long arg1, long arg2);

Parameters:
deviceHandle = device handle address of type FT_HANDLE (see header file) returned

from the GetDeviceHandle function.
setValue = Digital word representing the value of the upper DAC reference to set on the

mux controller board. The valid range for setValue is 0 to 1023.
{return value} = Passed status variable from the function call. If the function completed

successfully status will return with a value of 1, otherwise an error code is returned,
see the status error definition help topic.

Programming Notes:
1) The __stdcall calling convention is used for the function call.

A/DIC Inc. Page 42

SetDacVL

Description:
Sets the lower DAC reference for the per pixel correction DAC on the mux controller

board. The the DACVl value is set by a 10 bit word, the valid range for the DACVl
value is 0 to 1023, which equates to a DacVl voltage range of 0.714 to 2.50 volts.

Calling format:
SetDacVL(devHandle, setValue)

Visual C++ declare:
extern "C" __declspec(dllimport) long WINAPI SetDacVL(FT_HANDLE lngHandle, long

setValue);

Visual C++ call:
{return value} = SetDacVL(devHandle, setValue);

Visual BASIC declare:
Public Declare Function SetDacVL Lib "ADICLib_256R5.dll" (ByVal lngHandle As Long,

ByVal setValue As Long) As Long

Visual BASIC call:
{return value} = SetDacVL(devHandle, setValue)

LabView Function Prototype:
long SetDacVL(long arg1, long arg2);

Parameters:
deviceHandle = device handle address of type FT_HANDLE (see header file) returned

from the GetDeviceHandle function.
setValue = Digital word representing the value of the lower DAC reference to set on the

mux controller board. The valid range for setValue is 0 to 1023.
{return value} = Passed status variable from the function call. If the function completed

successfully status will return with a value of 1, otherwise an error code is returned,
see the status error definition help topic.

Programming Notes:
1) The __stdcall calling convention is used for the function call.

A/DIC Inc. Page 43

SetDetBias

Description:
Sets the detector bias voltage applied to the detector substrate. The detector bias

voltage is set by a 10 bit word by the SetDetBias procedure. The valid range for the
set value is 0 to 1023, where "0" is approximately 6 volts and "1023" is
approximately 12 volts, in linear voltage steps.

Calling format:
SetDetBias(devHandle, setValue)

Visual C++ declare:
extern "C" __declspec(dllimport) long WINAPI SetDetBias(FT_HANDLE lngHandle, long

setValue);

Visual C++ call:
{return value} = SetDetBias(devHandle, setValue);

Visual BASIC declare:
Public Declare Function SetDetBias Lib "ADICLib_256R5.dll" (ByVal lngHandle As

Long, ByVal setValue As Long) As Long

Visual BASIC call:
{return value} = SetDetBias(devHandle, setValue)

LabView Function Prototype:
long SetDetBias(long arg1, long arg2);

Parameters:
deviceHandle = device handle address of type FT_HANDLE (see header file) returned

from the GetDeviceHandle function.
setValue = Digital word representing the value for the detector bias voltage applied

tothe detector array substrate. The valid range for setValue is 0 to 1023.

Note: A rail to rail output opamp is used to drive the detector bias signal into the array.

The max voltage applied with be the lesser of 12V or (Vsupply - 0.300V). It is
recommended that the commanded voltage not exceed the linear output swing
range of the amplifier Vsupply is the DC supply voltage applied to the interface
electronics board, typically 12V DC

{return value} = Passed status variable from the function call. If the function completed
successfully status will return with a value of 1, otherwise an error code is returned,
see the status error definition help topic.

A/DIC Inc. Page 44

Programming Notes:
1) The __stdcall calling convention is used for the function call.

A/DIC Inc. Page 45

SetGlobalSkimVal_Brd

Description:
Sets the global skim variable, gskimUseVal, value to use during the DoCalibrate

calibration procedure. The default value of the gskimUseVal value is "0" which tells
the DoCalibrate procedure to turn off global skimming during calibration and
calibration will be performed using only the per pixel skim functionality. Setting
gskimUseVal to "-1" will tell the DoCalibrate procedure to automatically determine
the value for the mux global skim during calibration, which is useful for low
impedance detectors. Setting gskimUseVal to a none zero positive number will use
that value during calibration. The gskimUseVal is represented by a 10 bit number,
the valid range is -1 and 0 to 1023. The gskimUseVal is set default to "0" internally in
the software, and if the SetGlobalSkimVal_Brd procedure is never called, global
skim will be disabled and per pixel skim will be the only skim used for calibration.
This function operates on individual array controller boards in a multi-board system
by passing the desired board's device handle to the function.

Calling format:
SetGlobalSkimVal_Brd(devHandle, gskimUseVal)

Visual C++ declare:
extern "C" __declspec(dllimport) long WINAPI SetGlobalSkimVal_Brd(FT_HANDLE

lngHandle, long gskimUseVal);

Visual C++ call:
{return value} = SetGlobalSkimVal_Brd(devHandle, gskimUseVal);

Visual BASIC declare:
Public Declare Function SetGlobalSkimVal_Brd Lib "ADICLib_256R5.dll" (ByVal

devHandle as Long, ByVal gskimUseVal As Long) As Long

Visual BASIC call:
{return value} = SetGlobalSkimVal_Brd(devHandle, gskimUseVal)

LabView Function Prototype:
long SetGlobalSkimVal_Brd(long arg1, long arg2);

Parameters:
deviceHandle = device handle address of type FT_HANDLE (see header file) returned

from the GetDeviceHandle function.
gskimUseVal = Digital word representing the value for the global skim value to use

during calibration. A "-1" will let the calibration procedure automatically determine
the value for the global skim, "0" will turn global skim off, and a positive value will
use that value during the calibration procedure. The the valid range is -1 and 0 to
1023

A/DIC Inc. Page 46

{return value} = Returned function error status. A "1" indicates successful completion of
the function call.

Programming Notes:
1) The __stdcall calling convention is used for the function call.

A/DIC Inc. Page 47

SetIntegration

Description:
Sets the charge well integration time of the mux/detector array. The integration time is

represented by a 16 bit number in the range 3 to 65535, where "65535" will give the
maximum integration time and "3" will give the minimum integration time.

Calling format:
SetIntegration(devHandle, intValue)

Visual C++ declare:
extern "C" __declspec(dllimport) long WINAPI SetIntegration(FT_HANDLE lngHandle,

long intValue);

Visual C++ call:
{return value} = SetIntegration(devHandle, intValue);

Visual BASIC declare:
Public Declare Function SetIntegration Lib "ADICLib_256R5.dll" (ByVal lngHandle As

Long, ByVal intValue As Long) As Long

Visual BASIC call:
{return value} = SetIntegration(devHandle, intValue)

LabView Function Prototype:
long SetIntegration(long arg1, long arg2);

Parameters:
deviceHandle = device handle address of type FT_HANDLE (see header file) returned

from the GetDeviceHandle function.
intValue = Digital word representing the value of the mux/detector array integration

timeThe valid range for intValue is 0 to 65535. A value of "3" will give an integration
time of approximately 10uS which is the minimum allowable integration time.

{return value} = Passed status variable from the function call. If the function completed
successfully status will return with a value of 1, otherwise an error code is returned,
see the status error definition help topic.

Algorithmn:
integrationtime = 3.333us * (intValue)

Programming Notes:
1) The __stdcall calling convention is used for the function call.

A/DIC Inc. Page 48

SetMuxSize

Description:
Sets the mux/detector array size for arrays constructed using 128 channel readout

multiplexers. Only two sizes are valid, either 256 or 128. Setting mxSize to 256 tells
the PIC processor that the detector array is two mux die and a 256 element detector
array. Setting mxSize to any number other than 256 will tell the PIC processor that
the mux/detector array is a 128 element array. If a 256 channel readout multiplexer
is detected by the controller board then this function is ignored and should not be
called.

Calling format:
SetMuxSize(devHandle, mxSize);

Visual C++ declare:
extern "C" __declspec(dllimport) long WINAPI SetMuxSize(FT_HANDLE lngHandle,

long mxSize);

Visual C++ call:
{return value} = SetMuxSize(devHandle, mxSize);

Visual BASIC declare:
Public Declare Function SetMuxSize Lib "ADICLib_256R5.dll" (ByVal lngHandle As

Long, ByVal mxSize As Long) As Long

Visual BASIC call:
{return value} = SetMuxSize(devHandle, mxSize)

LabView Function Prototype:
long SetMuxSize(long arg1, long arg2);

Parameters:
deviceHandle = device handle address of type FT_HANDLE (see header file) returned

from the GetDeviceHandle function.
mxSize = Value that tells the PIC processor the array size. A value of 256 tells the

PICprocessor that the array is a 256 element detector array. Any other value sets
the PIC processor to the 128 detector element mode.

{return value} = Passed status variable from the function call. If the function completed
successfully status will return with a value of 1, otherwise an error code is returned,
see the status error definition help topic.

Programming Notes:
1) The __stdcall calling convention is used for the function call.

A/DIC Inc. Page 49

SetTESetPoint

Note: New function for R5 interface electronics ONLY

Description:
Sets the TEC setpoint temperature. This is the temperature that the TEC will attempt to

cool down to. The set value controls a 256 step digital pot that controls the
temperature. An equation relating the digital set value to temperature depends on
installed component values. See device data sheet for more detailed information

Calling format:
SetTESetPoint(devHandle, SPTval)

Visual C++ declare:
extern "C" __declspec(dllimport) long WINAPI SetTESetPoint(FT_HANDLE lngHandle,

long SPTval);

Visual C++ call:
{return value} = SetTESetPoint(devHandle, SPTval);

Visual BASIC declare:
Public Declare Function SetTESetPoint Lib "ADICLib_256R5.dll" (ByVal lngHandle As

Long, ByVal SPTval As Long) As Long

Visual BASIC call:
{return value} = SetTESetPoint(devHandle, SPTval)

LabView Function Prototype:
long SetTESetPoint(long arg1, long arg2);

Parameters:
deviceHandle = device handle address of type FT_HANDLE (see header file) returned

from the GetDeviceHandle function.
SPTval = Digital word representing the value of the TEC set point temperature. The

valid range for SPTval is 0 to 255. With 0 being warmest and 255 being coldest. The
equation for converting the digital word to temperature is a bit complex. The
equations below are simplified based upon the installed component values and
default thermistor.

 Let S = ratio of the digital word to 255 => SPTValue / 255

Compute the thermistor variable

 X = natural logarithm of the quantity { 3 * [{5*S + 2} / { 7 - 5*S }] }

A/DIC Inc. Page 50

 The thermistor data sheet provides a polynomial in X for converting to temperature

 Temperature = 1 / [A + B*X + C*X^2 + D*X^3 } in Kelvin

Where A = 0.0033538646

 B = 0.0002565409
 C = 0.0000019243889
 D = 0.00000010969244

 To convert to celcius just subtract 273.15 for the temperature computed above
{return value} = Passed status variable from the function call. If the function completed

successfully status will return with a value of 1, otherwise an error code is returned,
see the status error definition help topic.

Programming Notes:
1) The __stdcall calling convention is used for the function call.

A/DIC Inc. Page 51

SetWellSize

Description:
Sets the integration charge well size inside of the mux. Valid charge well sizes are 1pF,

4pF, 7pF, and 10pF for Rev F multiplexers, with 11pF, 14pf, 17pF, and 20pF also
available on Rev G multiplexers. The charge well sizes are set by an index number
(see below).

Calling format:
SetWellSize(devHandle, wSize);

Visual C++ declare:
extern "C" __declspec(dllimport) long WINAPI SetWellSize(FT_HANDLE lngHandle,

long wSize);

Visual C++ call:
{return value} = SetWellSize(devHandle, wSize, status);

Visual BASIC declare:
Public Declare Function SetWellSize Lib "ADICLib_256R5.dll" (ByVal lngHandle As

Long, ByVal wSize As Long) As Long

Visual BASIC call:
{return value} = SetWellSize(devHandle, wSize)

LabView Function Prototype:
long SetWellSize(long arg1, long arg2);

Parameters:
deviceHandle = device handle address of type FT_HANDLE (see header file) returned

from the GetDeviceHandle function.
wSize = index number used to set the integration charge well as follows:
 0 = Set 1pF charge well
 1 = Set 4pF charge well
 2 = Set 7pF charge well
 3 = Set 10pF charge well
 4 = Set 11pF charge well
 5 = Set 14pF charge well
 6 = Set 17pF charge well
 7 = Set 20pF charge well
{return value} = Passed status variable from the function call. If the function completed

successfully status will return with a value of 1, otherwise an error code is returned,
see the status error definition help topic.

A/DIC Inc. Page 52

Programming Notes:
1) The __stdcall calling convention is used for the function call.

A/DIC Inc. Page 53

StoreAll

Description:
Stores all mux/detector array operational data & settings currently resident in the PIC

processor's run-time memory to the PIC processor's NVRAM for future retrieval to a
known operating state after a mux controller board power cycle. For a list of stored
parameters and settings, see the RestoreAll command.

Calling format:
StoreAll(devHandle)

Visual C++ declare:
extern "C" __declspec(dllimport) long WINAPI StoreAll(FT_HANDLE lngHandle);

Visual C++ call:
{return value} = StoreAll(devHandle);

Visual BASIC declare:
Public Declare Function StoreAll Lib "ADICLib_256R5.dll" (ByVal lngHandle As Long)

As Long

Visual BASIC call:
{return value} = StoreAll(devHandle)

LabView Function Prototype:
long StoreAll(long arg1);

Parameters:
deviceHandle = device handle address of type FT_HANDLE (see header file) returned

from the GetDeviceHandle function.
{return value} = Passed status variable from the function call. If the function completed

successfully status will return with a value of 1, otherwise an error code is returned,
see the status error definition help topic.

Programming Notes:
1) The __stdcall calling convention is used for the function call.

A/DIC Inc. Page 54

StoreTeSetPoint

Note: New function for R5 interface electronics ONLY

Description:
Stores the current TEC setpoint temperature into the EEPROM of the TEC controller.

The TEC setpoint temperature stored in EEPROM is the temperature set point that
will be reloaded on power up of the TEC controller.

Calling format:
StoreTeSetPoint(devHandle)

Visual C++ declare:
extern "C" __declspec(dllimport) long WINAPI StoreTeSetPoint(FT_HANDLE

lngHandle);

Visual C++ call:
{return value} = StoreTeSetPoint(devHandle);

Visual BASIC declare:
Public Declare Function StoreTeSetPoint Lib "ADICLib_256R5.dll" (ByVal lngHandle As

Long) As Long

Visual BASIC call:
{return value} = StoreTeSetPoint(devHandle)

LabView Function Prototype:
long StoreTeSetPoint(long arg1);

Parameters:
deviceHandle = device handle address of type FT_HANDLE (see header file) returned

from the GetDeviceHandle function.
{return value} = Passed status variable from the function call. If the function completed

successfully status will return with a value of 1, otherwise an error code is returned,
see the status error definition help topic.

Programming Notes:
1) The __stdcall calling convention is used for the function call.

A/DIC Inc. Page 55

SuppressCalStat

Description:
Sets a flag that toggles whether pop-up status dialog boxes are enabled during the

calibration procedure. The internal default value of the SuppressCalStat flag is "0"
which enables pop-up status dialog boxes. Setting the SuppressCalStat flag to "1"
will suppress the pop-up status dialog boxes, setting the SuppressCalStat flag to
anything other than "1" will set the internal flag to "0", which is the default. If
SuppressCalStat is never called, pop-up status dialog boxes are enabled.

Calling format:
SuppressCalStat(numb)

Visual C++ declare:
extern "C" __declspec(dllimport) long WINAPI SuppressCalStat(long numb);

Visual C++ call:
{return value} = SuppressCalStat(numb);

Visual BASIC declare:
Public Declare Function SuppressCalStat Lib "ADICLib_256R5.dll" (ByVal numb As

Long) As Long

Visual BASIC call:
{return value} = SuppressCalStat(numb)

LabView Function Prototype:
long SuppressCalStat(long arg1);

Parameters:
numb = flag that sets whether pop-up status dialog boxes during calibration are enabled

or suppressed. A value of "1" will suppress pop-up status dialog boxes, any other
number will enable the pop-up status dialog boxes. The internal default setting is to
allow pop-up status dialog boxes.

{return value} = Returned function error status. A "1" indicates successful completion of
the function call.

Programming Notes:
1) The __stdcall calling convention is used for the function call.

A/DIC Inc. Page 56

SuppressErrors

Description:
Sets a flag that toggles whether pop-up error dialog boxes are enabled for most all

procedures. Setting the SuppressErrors flag to "1" will suppress pop-up error dialog
boxes in all functions that have pop-up error dialog boxes except the
GetDeviceHandle and MarkBadPixel routines. Setting the SuppressErrors flag to "0"
will suppress pop-up error dialog boxes. Procedures that have pop-up error boxes
suppressed will still return error codes in the status bit if errors are detected even
though the pop-up error dialog boxes are suppressed, but pop-up error warning
dialog boxes that will halt the program till the user clicks the "OK" button will be
suppressed allowing error handling to be handled or ignored by the top level calling
program via the status code returned from the data retrieval procedure call. The
programmed default setting is to suppress pop-up error dialog boxes to occur if the
SuppressErrors function is never called. To enable pop-up error dialog boxes, call
the SuppressErrors function with parameter "0".

Calling format:
SuppressErrors(numb)

Visual C++ declare:
extern "C" __declspec(dllimport) long WINAPI SuppressErrors(long numb);

Visual C++ call:
{return value} = SuppressErrors(numb);

Visual BASIC declare:
Public Declare Function SuppressErrors Lib "ADICLib_256R5.dll" (ByVal numb As

Long) As Long

Visual BASIC call:
{return value} = SuppressErrors(numb)

LabView Function Prototype:
long SuppressErrors(long arg1);

Parameters:
numb = flag that sets whether pop-up error dialog boxes in the ReadTemp, GetData,

and ReadPWM procedures are suppressed. A value of "1" will suppress pop-up
error dialog boxes, any other number will enable the pop-up error dialog boxes. The
internal default setting is to suppress pop-up error dialog boxes.

{return value} = Returned function error status. A "1" indicates successful completion of
the function call.

A/DIC Inc. Page 57

Programming Notes:
1) The __stdcall calling convention is used for the function call.

A/DIC Inc. Page 58

SyncPC

Description:
Retrieves all current operational configuration data from the PIC processor's run-time

memory such as integration time, DAC VH & VL settings, global skim setting, mux
size, well size, detector bias setting, bad pixel map array, and per pixel correction
coefficients to synchronize the host computer's settings to the current mux controller
board operational configuration.

This command is effectively the same as the RestoreAll command, but retrieves data

from the PIC's run-time memory instead of the controller board's EEPROM. This
command is useful in case of a computer crash and the mux controller board has not
been power cycled and the current settings are desired to not be lost.

Calling format:
SyncPC(devHandle, BaseSettings, bpMap, coeff)

Visual C++ declare:
extern "C" __declspec(dllimport) long WINAPI SyncPC(FT_HANDLE lngHandle, long

BaseSettings[], long bpMap[],
 long coeff[]);

Visual C++ call:
{return value} = SyncPC(devHandle, BaseSettings, bpMap, coeff);

Visual BASIC declare:
Public Declare Function SyncPC Lib "ADICLib_256R5.dll" (ByVal lngHandle As Long,

ByRef BaseSettings As Long, ByRef bpMap As Long, ByRef coeff As Long) As Long

Visual BASIC call:
{return value} = SyncPC(devHandle, BaseSettings(0), bpMap(0), coeff(0))

LabView Function Prototype:
long SyncPC(long arg1, long *arg2, long *arg3, long *arg4);

Parameters:
deviceHandle = device handle address of type FT_HANDLE (see header file) returned

from the GetDeviceHandle function.
BaseSettings = A 16 element array containing operational configuration data for the

mux. The array elements are defined as follows:

 BaseSettings(0) = Integration Time

 BaseSettings(1) = NOT USED, value will ALWAYS be 0
 BaseSettings(2) = Global Skim value
 BaseSettings(3) = NOT USED, value will ALWAYS be 0

A/DIC Inc. Page 59

 BaseSettings(4) = DACVh value
 BaseSettings(5) = NOT USED, value will ALWAYS be 0
 BaseSettings(6) = DACVl value
 BaseSettings(7) = NOT USED, value will ALWAYS be 0
 BaseSettings(8) = NOT USED, value will ALWAYS be 0
 BaseSettings(9) = Detector Bias
 BaseSettings(10) = Mux Size
 BaseSettings(11) = NOT USED, value will ALWAYS be 0
 BaseSettings(12) = Number of Bad Pixels
 BaseSettings(13) = Integration Well Size
 BaseSettings(14) = NOT USED, value will ALWAYS be 0
 BaseSettings(15) = NOT USED, value will ALWAYS be 0

bpMap = Array indicating which pixels are bad. Bad pixels are marked with a "1", good

pixels are marked with a "0"
coeffArray = Correction coefficient array returned that sets the per pixel DAC values for

correction
{return value} = Passed status variable from the function call. If the function completed

successfully status will return with a value of 1, otherwise an error code is returned,
see the status error definition help topic.

Base Settings Array Notes:
1) GlobalSkim value in volts is computed by:
 GblSkimValue = 2.083 * (BaseSettings(2) / 1023) + 0.417

2) DacVH value in volts is computed by:
 DacVHValue = 1.786 * (BaseSettings(4) / 1023) + 0.714

3) DacVL value in volts is computed by:
 DacVLValue = 1.786 * (BaseSettings(6) / 1023) + 0.714

4) DetBias value in volts is computed by:
 DetBiasValue = 6.0 * (BaseSettings(9) / 1023) + 6.0

5) Integration time in us is computed by:
 IntTime = BaseSettings(0) * 3.333 (in us)

6) BaseSetting(10) = 256 for a 256 array, and 128 for a 128 array

7) BaseSettings(13) = index value for Wellsize. See the wsize parameter in the

SetWellSize help

Programming Notes:
1) The __stdcall calling convention is used for the function call.

A/DIC Inc. Page 60

2) Function returns a status variable as long datatype, the results are passed back to
the calling procedure in the passed variables

3) Arrays are always passed by reference. To pass an entire array by reference in
Visual BASIC to a DLL written in C, only the first element of the array is passed by
reference. The DLL will have full access to the array since arrays are stored
sequentially in memory.

A/DIC Inc. Page 61

TecQuery

Note: New function for R5 interface electronics ONLY

Description:
Returns the firmware checksum of the TE controller board.

Calling format:
TecQuery(devHandle, teCksum)

Visual C++ declare:
extern "C" __declspec(dllimport) long WINAPI TecQuery(FT_HANDLE lngHandle, long*

teCksum);

Visual C++ call:
{return value} = TecQuery(devHandle, teCksum);

Visual BASIC declare:
Public Declare Function TecQuery Lib "ADICLib_256R5.dll" (ByVal lngHandle As Long,

ByRef teCksum As Long) As Long

Visual BASIC call:
{return value} = TecQuery(devHandle, teCksum)

LabView Function Prototype:
long TecQuery(long arg1, long arg2);

Parameters:
deviceHandle = device handle address of type FT_HANDLE (see header file) returned

from the GetDeviceHandle function.
teCksum = Checksum of TE controller firmware. This value should be converted to HEX

to check against published firmware revisions.

{return value} = Passed status variable from the function call. If the function completed

successfully status will return with a value of 1, otherwise an error code is returned,
see the status error definition help topic.

Programming Notes:
1) The __stdcall calling convention is used for the function call.

A/DIC Inc. Page 62

TurnEnhCoolerOff

Note: New function for R5 interface electronics ONLY

Description:
Disables the enhanced TE controller output.

Calling format:
TurnEnhCoolerOff(devHandle)

Visual C++ declare:
extern "C" __declspec(dllimport) long WINAPI TurnEnhCoolerOff(FT_HANDLE

lngHandle);

Visual C++ call:
{return value} = TurnEnhCoolerOff(devHandle);

Visual BASIC declare:
Public Declare Function TurnEnhCoolerOff Lib "ADICLib_256R5.dll" (ByVal lngHandle

As Long) As Long

Visual BASIC call:
{return value} = TurnEnhCoolerOff(devHandle)

LabView Function Prototype:
long TurnEnhCoolerOff(long arg1);

Parameters:
deviceHandle = device handle address of type FT_HANDLE (see header file) returned

from the GetDeviceHandle function.
{return value} = Passed status variable from the function call. If the function completed

successfully status will return with a value of 1, otherwise an error code is returned,
see the status error definition help topic.

Programming Notes:
1) The __stdcall calling convention is used for the function call.

A/DIC Inc. Page 63

TurnEnhCoolerOn

Note: New function for R5 interface electronics ONLY

Description:
Enables the enhanced cooler controller output.

Calling format:
TurnEnhCoolerOn(devHandle)

Visual C++ declare:
extern "C" __declspec(dllimport) long WINAPI TurnEnhCoolerOn(FT_HANDLE

lngHandle);

Visual C++ call:
{return value} = TurnEnhCoolerOn(devHandle);

Visual BASIC declare:
Public Declare Function TurnEnhCoolerOn Lib "ADICLib_256R5.dll" (ByVal lngHandle

As Long) As Long

Visual BASIC call:
{return value} = TurnEnhCoolerOn(devHandle)

LabView Function Prototype:
long TurnEnhCoolerOn(long arg1);

Parameters:
deviceHandle = device handle address of type FT_HANDLE (see header file) returned

from the GetDeviceHandle function.
{return value} = Passed status variable from the function call. If the function completed

successfully status will return with a value of 1, otherwise an error code is returned,
see the status error definition help topic.

Programming Notes:
1) The __stdcall calling convention is used for the function call.

A/DIC Inc. Page 64

Status / Error Code Definitions

Almost all the DLL functions return a status indicator as the value of the function. The
exceptions are; GetBoard_Handle which return the handle value, GetNumBoards
which returns the number of attached boards, and Flux_P, Flux_W which return the
double precision value of the flux curve numerical integration. If there are no errors
detected in the communications to the controller board then the returned status
value will be a value of "1". If an error is detected in communications, an error code
indicating the type of error detected is returned. The code returned is a binary
weighted code that can indicate when one or more errors have been detected, the
value of the status code number is the binary weighted sum of all detected errors.
Ordinarily though, it is believed if an error occurs in a function call, it will be the only
error and it will be apparent from the error code returned as to what error was
detected.

To determine what the errors detected are when there are multiple errors embedded in
the status code number returned in the status variable, a logical AND mask function
can be applied to determine which error code bits are set based on the following
binary weighting:

Bit# Binary Weighting Code Description

======= ================== ===================================

Bit12 4096 USB EEPROM Read error

Bit11 2048 USB GetStatus error

Bit10 1024 Unknown error

Bit9 512 Extra Data error

Bit8 256 No ETX error

Bit7 128 Checksum Mismatch error

Bit6 64 Command Word Received wrong

Bit5 32 Received NACK

Bit4 16 Not STX error

Bit3 8 USB Read error

Bit2 4 USB Write error

Bit1 2 USB Purge error

Bit0 1 OK - Command completed successfully

A/DIC Inc. Page 65

Error Definitions:

USB EEPROM Read error = This error can occur in the GetQuery and GetQuery2
commands and deals with the reading of the device information in the USB
interface's data EEPROM

USB GetStatus error = This error can originate in the GetQuery and GetQuery2
commands and deals with the statusing of the receive and transmit buffers of the
USB interface

Unknown error = This error is for when it is any other error other than the specific error
types that are trapped and defined within the DLL

Extra Data error = This error is detected when more data bytes are sent back to the
computer than was requested for by the GetData function

No ETX error = This error is detected when the End Transmission byte is not detected
by the computer at the end of a sequence of data bytes sent by the controller board
to the computer

Checksum Mismatch error = This error is detected in any function that sends/receives
data to the controller board and refers to the case when the checksum computed by
the controller board of the data sent to the computer doesn't match the checksum
computed by the computer of the data received by the computer

Command Word Received wrong = This error is detected when the command echoed
back to the computer by the controller board doesn't match the command that was
sent to the controller board. This is usually caused by calling a DLL function call
before the prior DLL function call has completed and returned. In the programming
enviroment you want to make sure that multi-threaded calls (calling DLL functions in
parallel) is turned off to avoid getting this error

Received NACK = This error is detected when the controller board did not send back
the ACKnowledge byte in the data byte header of the data being sent back to the
computer and sends the Not ACKnowledge byte instead indicating the controller
board communications is not functioning properly

Not STX error = This error is detected when the first byte received back from the
controller board is not the Start Transmission byte which proceeds all data returned
to the computer from the controller board.

USB Read error = This error is detected when the low level USB driver did not complete
a USB read function properly.

USB Write error = This error is detected when the low level USB driver did not complete
a USB write function properly.

A/DIC Inc. Page 66

USB Purge error = This error is detected when the low level USB driver did not
complete a USB purge function properly. The USB read/write buffers are purged
prior to any USB write function

