&1 Spectral Products - East

Spectrometers - Spectrophotometers - Color Instruments - Spectrographs - Monochromators

111 Highland Drive - Putnam, CT - 06260 - USA
PHONE (860) 928-5834 (860) 928-1928. FAX (860) 928-1515 (860) 928-2676
http://www.cvispectral.com

SM32Pro SDK

Users Manual

CVI Spectal Prgducts

iy
55;"’5

LT
¥
ﬂ'r‘?lp Eﬂ-“:
= Siog,

'ruh}

L
&
-
£
&
-
o
=
]
o

Page 1 of 18

TABLE OF CONTENTS

GETTING STARTED ... ieiiiie et cres s rsssassesreassassesrsassnsrassnssmssanssnssassanssassnssenssnnrnnns 3
USING THE CVI LIBRARIES ..ot ieire i reassmssesssmssnsssnssnsssnssnssasssnssassenssnssansennren 5
GENERAL OVERVIEW ...t ieiiiieirisirsassessesssassesssnssassanssnssassenssnssnsssnssnssenssnssnnsenssnns 6
USING CURVE FITTING TO CALIBRATE SPECTRAM.......coeiiiicieireireererensmrennsnnees 7
SDK FUNCGCTIONS ..ot ieiriresrerersasresreassasrassasrasrsassmsranssmssasssassnsanssmsranssnsrnnssnnsnns 9
ALPHABETICAL FUNCTION REFERENCE.........o ot ecreesmrensmsensmnssnnsmnsnns 10
CVITESECAIMoeeeeeeeee e e e 10
CVISOEUINIEX ... e e e 11
CVISEOUNT...........ooeeee e e 12
CVITHIQQEIrREAAENXccooommeiiiie ettt e e 13
CVICIOSCEXo e e 14
CVIPOIYFIL................eeeeeeeeeeeeeeee et e e e e e e e et e e e e e e e e e e aaaaaaaeaeas 15
CVIPOIYCAIC.............enee e e e e e e 16
SANPLE CODE....... oo i e et ee s rmreassassasssassassanssassasssnssassanssnssassenssnssnnssnssnnsnnnen 17

Page 2 of 18

Getting Started

Welcome to the CVI Spectral Products SM32Pro Software Development Kit.

This kit documents a library of functions for accessing the PCI/ISA/PCMCIA
NI-DAQ Data Acquisition boards used by the CCD detector units. Two fundamental
CCD imaging concepts are the Collection of Data and Generating Meaningful Values
from that data.

Collection of Data

In our CCD spectrometer, the light is dispersed across a charge-coupled device
(CCD) 2086 pixel detector array. Data is collected by each pixel and converted to a
relative value by the analog-to-digital (A/D) converter ranging from 0 to 4095 and
representing the intensity of the light at each pixel. We are able to control the amount of
time that the pixels collect light and thus read signals of varying strengths. Using this
library of functions you will be able to adjust the signal capture time (Integration Time) and
collect the converted signals from each pixel. The criteria to adjust the integration is to try
different lengths of time with a reference signal representing the maximum possible
signal level during the measurement until the peak value across the range of pixels is
close to, but not at 4095. We recommend trying to get the peak between 3900 and 4000.
This way you can be sure that you are getting an optimized measurement condition with
no saturation of CCD elements.

Generating Meaningful Values

The information you collect from the system is only the relative signal size at each
detector pixel until it has been calibrated to absolute (certified reference) values. That is
in the raw data, the pixel location represents spatial distribution of the CCD elements and
the corresponding intensity is represented by a digital value. Since we can adjust the
strength of the light source and the integration time of the CCD, this A/D value only
provides a relative representation of the real world parameters.

We address both of these problems. We connect pixels to wavelengths by use of
known emission lines (e. g. CVI calibration light sources or narrow band filters) across the
range of pixels together with a table relating pixels to wavelengths in nanometers. Curve
fitting functions can then be applied to generate a polynomial function for the conversion
of all other pixels to wavelengths.

We address the second problem in one of two ways. Both ways involve
"normalization." Normalization involves measurements of signal strength based on its
ratio with respect to reference signal intensity. If we are only interested in the spectral
distribution of the sample signal, then we can normalize a sample signal scan to one
reference value by, for example, intensities of all the array elements divided by the peak
intensity. If we want to measure percent transmission, the light can be measured first
with only air in the light path as 100% reference and then the sample can be inserted into
the light path and a sample scan followed. Consequently, the divisions of sample scan
readings by the 100% reference yields the relative transmission values, or percent
transmission when multiplied by 100%. For reflectance measurement similar practice

Page 3 of 18

can be applied and a high reflector can be used as a reference air in many cases.

Background Scan. It is strongly recommended that a measurement be taken prior
to any sample scan, in which no external light but only the detector noise will be sensed
and subsequently subtracted from all the following measurements. This will subtract
thermally generated “background” DC offset level and statistically establish a baseline of
zero for all subsequent measurements.

Page 4 of 18

Using the CVI Libraries

NOTE:
All libraries mentioned below are installed when NI-Daq is installed.

For Windows C/C++, you must include the correct "include" file and "lib" file for the
functions you are calling:

32-bit NI-DAQ applications also require the 32-bit NI-DAQ header, “nidagex.h” and
libraries, “nidag32.lib” and “nidex32.lib". “Nidagex.h” also references other NI-DAQ
headers that you must include during compilation either by copying to the local build

directory or by reference in your compiler’s “directories” option.

NI-DAQ cards require the NIDAQ libraries, “nidaq32.lib” and “nidex32.lib” to be
included in the program’s link option because they reference “nidag32.dll” and
“nidex32.dlI” dynamic link libraries which should have been installed into the
“‘RootDrive:\Windows\System” directory when the NI-DAQ configuration software from
the National Instruments CD was installed.

For Visual Basic, please include the correct "BAS" file. The function declarations
listing in this file demonstrate the correct data types. To pass a "pointer" or array to a DLL
from Visual basic, simply pass the first element of the array (IE SampleDatal[0]).

Please refer to the samples or give us a call if you need any further technical
assistance.

Procedure for using the .dll with vc++

1. Copy cvidbni.dll to your work or windows\system folder.
2. Copy cvidbni.lib to your work or release folder.
3. Add release\cvidbni.lib to the project/settings/link/object/library module.

Page 5 of 18

General Overview

Some basic fundamentals of utilizing the CVI SDK functions:

You must keep track of the base address of the acquisition board and the current
integration time in your program.

Then you should first call cviTestCard to get the appropriate information of the
board. Then you should call cviSetIntEx to set the integration time appropriately for your
application. A dummy read of the data, described in the next paragraph should follow
this function call. Optionally, integration time selection may be automated with code by
reading a reference sample, scanning the data to find the peak value, scaling the
integration time to move the peak to your desired range, and repeating this algorithm until
your reference sample falls within a desired range. This process works best if you select
an arbitrary high and low value for the integration time and make guesses in between the
two. If a guess is too high (the peak is above your desired range), then your current
guess becomes the previous guess averaged with the low value and the new high value
becomes your previous guess. If a guess is too low (the peak value falls below your
desired range), then your current guess becomes the average of the previous guess and
the high value and the new low value becomes your previous guess.

Integration time is the time period the CCD pixels are exposed to light before the
resulting charges are read out. A longer integration time can allow you to detect a lower
light level signal. The longer your integration time is, the more background signal will
accumulate.

Using Curve Fitting to Calibrate SM32Pro

Curve fitting is used in SM32Pro to correlate the physical locations of pixels on the

Page 6 of 18

CCD with the known wavelength of the radiation falling on them.

This is done by identifying the pixel locations where the maximal of the known
wavelength is at. These peak intensity wavelengths and pixels are used by
cviTriggerRead to generate a correlating polynomial function which best represents all
the data points. We have found that using a third order polynomial function produced the
most desirable results for most cases. In cases where high dispersion elements are
used, lower order polynomial functions may have to be utilized due to the limited known
wavelengths available from the calibration lamps

Calibration Files

Each unit’s calibration set is included in the SpectraM or SpectraM-XL
software settings. For OEM customers who do not receive a data acquisition
board, the calibration set is included on a floppy disk under the filename
“‘weal-xxxxxxx.txt”, where the 7 “x” is the two letter, 5-digit unit serial number.
This text file contains calibration data of the form “DataX=Wavelength;Pixel”.
The file also contains the regression coefficients “AZero value”, “AOne
value”, ..., “BThree value” that satisfy the equations

Ai=Ao+A1P+ A2P2+ AsPis

P=Bo+BiA+B2Ai2+ B3lis.

The A values are the coefficients for conversions from a pixel number to a
wavelength in “nm” by use of the above first third order polynomial function.
The B values allow the conversions from a desired wavelength in “nm” to a
pixel number. For example, the following is a portation of file “wcal-
HR90190.txt”, which is for use with the example unit HR90190.

SDK Functions

Data Acquisition

Page 7 of 18

cviTestCard

Used by the program to test the acquisition board.

cviSetintEx

Used by the program to initialize the acquisition board.

cviSetint

Used by the program to set integration time.

cviTriggerReadEx

Used by the program to collect spectral data.

cviCloseEx

Used by the program to reset all board options upon resetting the software.

Calibration

cviPolyFit

Calculates the coefficients for a polynomial curve fitting function given an array of
independent variables and a corresponding array of dependent variables. Used to
generate a calibration function from pixels to wavelength.

cviPolyCalc

Calculates a polynomial function given the independent variable and a coefficient array.
Used for determining the wavelength for a given pixel location.

Procedure of getting data

cviTestCard

Tests the card to see if it is working properly.

cviSetintEx

Initialize the board and sets integration time at the same time.
cviSetint

Sets integration time.

cviTriggerReadEx

Reads acquired data.

cviCloseEx

Resets all the values to default values. (should be called at the exiting of program)

Alphabetical Function Reference

cviTestCard
int cviTestCard

(

short nDeviceNumber; /I device number

Page 8 of 18

short nBoardType; /I board type
short nGain; /I gain

)

This function is used to test the resources of the 10 board

nDeviceNumber is the device number of the |O board.

nBoardType is the type of board. (If the board is PCI-1200, it should be 0, if the board is
6023, it should be 1)

nGain is the set intensity of acquired data (should be set to 2 always)

RETURN

If the board is found successfully the function will return a positive return value.

If the board is not found successfully the function will return a negative number

cviSetintEx

long cviSetIntEx

(

int const nBase //IBase address of DPIO board
int const nPixelNumber //a pixel number between 1 and 2086
long const ITime /Inew integration time

Page 9 of 18

int nDeviceNumber /ldevice number of installed card
int nChannel /Ilchannel the device is found on
int nGain //set gain to amplify signal

)

This function is used to initialize the board.

wBase is the base address of the DPIO expansion board. (This should be 0x300 in Hex)
ITime is amount of time in milliseconds to set as the new integration time. This number
should range between 35 and 65535 for the 1200 series or 11 and 65535 for the 6023.
nPixelNumber Informs the number of pixels (13-18 for optical blank and 33-2080 for the
2048 pixels)

nDeviceNumber informs the function of which 10 device number to run. (You find this
number in the NIMAX.exe utility installed with the devise drivers.

nChannel informs the function of which Channel the device is located on

nGain informs the function of how much to amplify the signal. (This should be 2)

RETURN
Function returns the new integration time.

cviSetint

long cviSetint

(

int const nTriggerMode //Sets trigger mode
long const ITime, /Inew integration time

)

Page 10 of 18

This function is used to change the integration time.

nTrigger is used to set the trigger mode. (Free Run = 10, Software Trigger = 11,
Hardware Trigger = 12)

ITime is amount of time in milliseconds to set as the new integration time. This number

should range between 35 and 65535 for the 1200 series or between 11 and 65535 for the
6023.

RETURN
Function returns the new integration time.

cviTriggerReadEx

int cviTriggerReadEx

(

int const nBase; /I Base address of acquisition board

long const Time; // Current integration time

int const nUnitType; // nUnitType as defined above

USHORT™ pArray; /I The array in which spectral data is stored

)

wBase is the base address of the data acquisition plug in board. (should be 0x300 in
Hex)

Page 11 of 18

Time is the current integration time. Time does not set the integration time, but is
used for determining when the function should return an error if it gets no response.
nUnitType informs the function of what type of spectrometer unit is connected to the 1O
board at wBase. (should be 0)

pArray points to a read memory address with 2086 unsigned short integers.

RETURN

If the board triggers successfully, then the function returns the number of data. If it does
not trigger successfully, then the board returns —1.

cviCloseEx
int cviCloseEx

(
)

This function is called to reset all default valued for cviTestCard upon closing of the
application

RETURN

1

Page 12 of 18

cviPolyFit

int cviPolyFit

(

double far* x, /I Array of independent variables
double far*y, /I Array of dependent variables

int const numPts, // Number of points in independent and dependent arrays
double far* coefs, // Pointer to array to hold calculated coefficients [index from 0 to
order]

int const order /I Order of polynomial

)

This curve fitting function is used to find a polynomial function to calculate the wavelength

Page 13 of 18

of a given pixel.

This function is used for calibration purposes. Either a calibration light source or a series
of narrow band filters are scanned and the pixel location of all known peaks are identified
along with the known wavelength at that peak. These peak locations and wavelengths
are stored in the arrays x and y, respectively. The arrays indices should range from O to
[Number_of Points - 1]. They are passed to the function along with an requested order
for the polynomial fitting function and an array large enough to hold the coefficients ().
This array is then used with cviPolyCalc to calculate wavelength from pixels.

X is an array containing the independent variables. It should range from 0 to (numPts-1).
y is an array containing the dependent variables. It should range from 0 to (numPts-1).
numPts is the number of points in the variable arrays

coefs is a pointer to the array that will contain the polynomial coefficients. It should range
from 0O to (order-1).

order is the desired order of the polynomial. We have determined third order to be the
optimum for wavelength calibration for most cases.

RETURN
This function will return 1 if the function is successful. Otherwise it will return negative.

cviPolyCalc

void cviPolyCalc

(

double far* coefs, //
int const order,

int const x,

double far* y

)

This function calculates for the following formula:

y=a0 +a1*xM +a2*x"2 + ... + aN*x"N, where * specified multiplication and * specifies "to
the power of."

Page 14 of 18

coefs is a pointer to an array containing the polynomial coefficients. These can be
calculated using cviPolyFit.

order specified the order of the polynomial equation and must be less than or to equal to
the number of elements in coefs.

X is the independent variable, in this case, the pixel number.

y is the value to be calculated

RETURN
None

Example

#define DLLIMPORT extern "C" __declspec(dllimport)

#define FUNCTIONFLAGS __stdcall

DLLIMPORT int FUNCTIONFLAGS cviTestCard(short nDeviceNumber, short
nBoardType, short nGain);

DLLIMPORT int FUNCTIONFLAGS cviSetIntEx(int const nBase, int const nPixelNumber,
long const ITime, int nDeviceNumber, int nChannel, int nGain);

DLLIMPORT int FUNCTIONFLAGS cviSetInt(int const nTriggerMode, long const ITime);
DLLIMPORT int FUNCTIONFLAGS cviTriggerReadEx(int const nBase, long const ITime,
int const nUnitType, USHORT™ pArray);

DLLIMPORT int FUNCTIONFLAGS cviCloseEx();

DLLIMPORT void FUNCTIONFLAGS cviPolyCalc(double *coefs, int order, int x, double
*y);

DLLIMPORT int FUNCTIONFLAGS cviPolyFit(double *x, double *y, int numPts,double
*coefs, int order);

Page 15 of 18

main() {

USHORT *PixArray; //for pixel data
long lIntTime=35; //the least integration time is 11ms for 6023, and 35ms for 1200
int nPixelNo = 2086; //for Sony CCD

int nRwturnValue = cviTestCard(1, 1, 2);//DeviceNumber = 1; Board = 6023; Gain = 2;
if(nRwturnValue<0) //fail to test the board

AfxMessageBox("The NI board does not work correctly.");
return;

}
cviSetIntEx(0x300, 2086, lIntTime, 1,0, 2);// Initialize the board

cviSetInt(10, lIntTime);// Freerun trigger mode and set the integration time
PixArray = new USHORT[nPixelNo];//Array for pixel data

nRwturnValue = cviTriggerReadEx(0x300, IIntTime, 0, PixArray);
if(nRwturnValue!=nPixelNo)

{
AfxMessageBox("Data Aquisition does not work correctly.");
delete[] PixArray;
return;

}

/ICalibration for the wavelength

double fWavelLength[14];

double fPixelNo[14];

int CalibrationNo=14;

double fCoefficient[5];

//[Reandom calibration data
fWavelLength[0] = 296.7 ; fPixelNo[0] = 34;
fWavelLength[1] = 302.1; fPixelNo[1] = 81;

fWavelLength[2] = 313.2; fPixelNo[2] = 181;
fWavelLength[3] = 365.0; fPixelNo[3] = 226;
fWavelLength[4] = 435.8; fPixelNo[4] = 413;
fWavelLength[5] = 546.1; fPixelNo[5] = 697;
fWavelLength[6] = 577.0; fPixelNo[6] = 775;
fWavelLength[7] = 579.1; fPixelNo[7] = 781;
fWavelLength[8] = 696.5; fPixelNo[8] = 1073;
fWavelLength[9] = 763.5; fPixelNo[9] = 1237;
fWavelLength[10] = 772.4; fPixelNo[10] = 1259;
fWavelLength[11] = 811.5; fPixelNo[11] = 1354;
fWavelLength[12] = 912.3; fPixelNo[12] = 1595;
fWavelLength[13] = 1014.0; fPixelNo[13] = 1835;

Page 16 of 18

cviPolyFit(fPixelNo, fWavelLength, CalibrationNo,fCoefficient, 3);

HFILE file = _Icreat("SMSDK _test.txt",0);

char strTemp[80];

sprintf(strTemp," Pixel Wavelength(nm) Intensity \r\n");
_lwrite(file,(LPSTR)strTemp,strlen(strTemp));

for(int i=32;i<2080;i++)

{
double fWL,;
cviPolyCalc(fCoefficient,3,i-31 ,&fWL);
sprintf(strTemp," %5d %5.2f %5d\r\n",i-31,fWL,(int)PixArray[i]);
_lwrite(file,(LPSTR)strTemp,strlen(strTemp));
}
_lIclose(file);

delete[] PixArray;

cviCloseEx(); /Close the board

}

Page 17 of 18

	SM32Pro SDK
	Users Manual
	Getting Started
	Using the CVI Libraries
	General Overview
	Using Curve Fitting to Calibrate SM32Pro
	SDK Functions
	Alphabetical Function Reference
	cviTestCard
	cviSetIntEx
	cviSetInt
	cviTriggerReadEx
	cviCloseEx
	cviPolyFit
	cviPolyCalc

